Exponential Time Differencing for Stiff Systems

نویسندگان

  • S. M. Cox
  • P. C. Matthews
چکیده

We develop a class of numerical methods for stiff systems, based on the method of exponential time differencing. We describe schemes with secondand higher-order accuracy, introduce new Runge–Kutta versions of these schemes, and extend the method to show how it may be applied to systems whose linear part is nondiagonal. We test the method against other common schemes, including integrating factor and linearly implicit methods, and show how it is more accurate in a number of applications. We apply the method to both dissipative and dispersive partial differential equations, after illustrating its behavior using forced ordinary differential equations with stiff linear parts. c © 2002 Elsevier Science (USA)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern formation in the diffusive Fisher equation†

In this paper, numerical simulations of nonlinear Fisher’s equation in oneand twodimensions have been considered. The derivatives and integrals are replaced by the necessary matrices, and the resulting algebraic system of equations was advanced by the popular fourth-order exponential time differencing Runge-Kutta (ETDRK4) schemes proposed by Cox and Matthew [Exponential time differencing for st...

متن کامل

Exponential-time differencing schemes for low-mass DPD systems

Several exponential-time differencing (ETD) schemes are introduced into the method of dissipative particle dynamics (DPD) to solve the resulting stiff stochastic differential equations in the limit of small mass, where emphasis is placed on the handling of the fluctuating terms (i.e., those involving the random forces). Their performances are investigated numerically in some test viscometric fl...

متن کامل

Fourth-Order Time-Stepping for Stiff PDEs

A modification of the exponential time-differencing fourth-order Runge–Kutta method for solving stiff nonlinear PDEs is presented that solves the problem of numerical instability in the scheme as proposed by Cox and Matthews and generalizes the method to nondiagonal operators. A comparison is made of the performance of this modified exponential time-differencing (ETD) scheme against the competi...

متن کامل

Solving Complex PDE Systems for Pricing American Options with Regime-Switching by Efficient Exponential Time Differencing Schemes

In this paper we study the numerical solutions of a class of complex PDE systems with free boundary conditions. This problem arises naturally in pricing American options with regimeswitching, which adds significant complexity in the PDE systems due to regime coupling. Developing efficient numerical schemes will have important applications in computational finance. We propose a new method to sol...

متن کامل

Efficient semi-implicit schemes for stiff systems

When explicit time discretization schemes are applied to stiff reaction–diffusion equations, the stability constraint on the time step depends on two terms: the diffusion and the reaction. The part of the stability constraint due to diffusion can be totally removed if the linear diffusions are treated exactly using integration factor (IF) or exponential time differencing (ETD) methods. For syst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002